Spikernels: Embedding Spiking Neurons in Inner-Product Spaces

نویسندگان

  • Lavi Shpigelman
  • Yoram Singer
  • Rony Paz
  • Eilon Vaadia
چکیده

Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this paper is the construction of biologically-motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can perform various prediction tasks. We discuss in detail the derivation of Spikernels and describe an efficient algorithm for computing their value on any two sequences of neural population spike counts. We demonstrate the merits of our modeling approach using the Spikernel and various standard kernels for the task of predicting hand movement velocities from cortical recordings. In all of our experiments all the kernels we tested outperform the standard scalar product used in regression with the Spikernel consistently achieving the best performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spikernels: Predicting Arm Movements by Embedding Population Spike Rate Patterns in Inner-Product Spaces

Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this letter is the construction of biologically motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can perform various prediction tasks. We di...

متن کامل

On Generalized Injective Spaces in Generalized Topologies

In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

A Comparative Study of Fuzzy Inner Product Spaces

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

متن کامل

NORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS

In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002